3.3.50 \(\int \frac {x^3 (A+B x^3)}{(a+b x^3)^{5/2}} \, dx\) [250]

3.3.50.1 Optimal result
3.3.50.2 Mathematica [C] (verified)
3.3.50.3 Rubi [A] (verified)
3.3.50.4 Maple [A] (verified)
3.3.50.5 Fricas [C] (verification not implemented)
3.3.50.6 Sympy [A] (verification not implemented)
3.3.50.7 Maxima [F]
3.3.50.8 Giac [F]
3.3.50.9 Mupad [F(-1)]

3.3.50.1 Optimal result

Integrand size = 22, antiderivative size = 283 \[ \int \frac {x^3 \left (A+B x^3\right )}{\left (a+b x^3\right )^{5/2}} \, dx=\frac {2 (A b-a B) x^4}{9 a b \left (a+b x^3\right )^{3/2}}-\frac {2 (A b+8 a B) x}{27 a b^2 \sqrt {a+b x^3}}+\frac {4 \sqrt {2+\sqrt {3}} (A b+8 a B) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{27 \sqrt [4]{3} a b^{7/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

output
2/9*(A*b-B*a)*x^4/a/b/(b*x^3+a)^(3/2)-2/27*(A*b+8*B*a)*x/a/b^2/(b*x^3+a)^( 
1/2)+4/81*(A*b+8*B*a)*(a^(1/3)+b^(1/3)*x)*EllipticF((b^(1/3)*x+a^(1/3)*(1- 
3^(1/2)))/(b^(1/3)*x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2* 
2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)*x+a^(1/3)*(1+3^ 
(1/2)))^2)^(1/2)*3^(3/4)/a/b^(7/3)/(b*x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/ 
3)*x)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)
 
3.3.50.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.10 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.35 \[ \int \frac {x^3 \left (A+B x^3\right )}{\left (a+b x^3\right )^{5/2}} \, dx=\frac {2 x \left (-8 a^2 B+2 A b^2 x^3-a b \left (A+11 B x^3\right )+(A b+8 a B) \left (a+b x^3\right ) \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a}\right )\right )}{27 a b^2 \left (a+b x^3\right )^{3/2}} \]

input
Integrate[(x^3*(A + B*x^3))/(a + b*x^3)^(5/2),x]
 
output
(2*x*(-8*a^2*B + 2*A*b^2*x^3 - a*b*(A + 11*B*x^3) + (A*b + 8*a*B)*(a + b*x 
^3)*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x^3)/a)]))/( 
27*a*b^2*(a + b*x^3)^(3/2))
 
3.3.50.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 280, normalized size of antiderivative = 0.99, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {957, 817, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (A+B x^3\right )}{\left (a+b x^3\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 957

\(\displaystyle \frac {(8 a B+A b) \int \frac {x^3}{\left (b x^3+a\right )^{3/2}}dx}{9 a b}+\frac {2 x^4 (A b-a B)}{9 a b \left (a+b x^3\right )^{3/2}}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {(8 a B+A b) \left (\frac {2 \int \frac {1}{\sqrt {b x^3+a}}dx}{3 b}-\frac {2 x}{3 b \sqrt {a+b x^3}}\right )}{9 a b}+\frac {2 x^4 (A b-a B)}{9 a b \left (a+b x^3\right )^{3/2}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {(8 a B+A b) \left (\frac {4 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} b^{4/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {2 x}{3 b \sqrt {a+b x^3}}\right )}{9 a b}+\frac {2 x^4 (A b-a B)}{9 a b \left (a+b x^3\right )^{3/2}}\)

input
Int[(x^3*(A + B*x^3))/(a + b*x^3)^(5/2),x]
 
output
(2*(A*b - a*B)*x^4)/(9*a*b*(a + b*x^3)^(3/2)) + ((A*b + 8*a*B)*((-2*x)/(3* 
b*Sqrt[a + b*x^3]) + (4*Sqrt[2 + Sqrt[3]]*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2 
/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x) 
^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^ 
(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*b^(4/3)*Sqrt[(a^(1/3)*(a^ 
(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3] 
)))/(9*a*b)
 

3.3.50.3.1 Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 957
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[(-(b*c - a*d))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a 
*b*e*n*(p + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b*n* 
(p + 1))   Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, 
 m, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && N 
eQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] && LeQ[-1 
, m, (-n)*(p + 1)]))
 
3.3.50.4 Maple [A] (verified)

Time = 4.43 (sec) , antiderivative size = 372, normalized size of antiderivative = 1.31

method result size
elliptic \(-\frac {2 x \left (A b -B a \right ) \sqrt {b \,x^{3}+a}}{9 b^{4} \left (x^{3}+\frac {a}{b}\right )^{2}}+\frac {2 x \left (2 A b -11 B a \right )}{27 b^{2} a \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {2 i \left (\frac {B}{b^{2}}+\frac {2 A b -11 B a}{27 b^{2} a}\right ) \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{3 b \sqrt {b \,x^{3}+a}}\) \(372\)
default \(B \left (\frac {2 a x \sqrt {b \,x^{3}+a}}{9 b^{4} \left (x^{3}+\frac {a}{b}\right )^{2}}-\frac {22 x}{27 b^{2} \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {32 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{81 b^{3} \sqrt {b \,x^{3}+a}}\right )+A \left (-\frac {2 x \sqrt {b \,x^{3}+a}}{9 b^{3} \left (x^{3}+\frac {a}{b}\right )^{2}}+\frac {4 x}{27 b a \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {4 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{81 b^{2} a \sqrt {b \,x^{3}+a}}\right )\) \(669\)

input
int(x^3*(B*x^3+A)/(b*x^3+a)^(5/2),x,method=_RETURNVERBOSE)
 
output
-2/9*x/b^4*(A*b-B*a)*(b*x^3+a)^(1/2)/(x^3+a/b)^2+2/27/b^2*x/a*(2*A*b-11*B* 
a)/((x^3+a/b)*b)^(1/2)-2/3*I*(B/b^2+1/27/b^2/a*(2*A*b-11*B*a))*3^(1/2)/b*( 
-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3 
^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1 
/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2 
*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/ 
2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^ 
2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/ 
2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))
 
3.3.50.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.50 \[ \int \frac {x^3 \left (A+B x^3\right )}{\left (a+b x^3\right )^{5/2}} \, dx=\frac {2 \, {\left (2 \, {\left ({\left (8 \, B a b^{2} + A b^{3}\right )} x^{6} + 8 \, B a^{3} + A a^{2} b + 2 \, {\left (8 \, B a^{2} b + A a b^{2}\right )} x^{3}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) - {\left ({\left (11 \, B a b^{2} - 2 \, A b^{3}\right )} x^{4} + {\left (8 \, B a^{2} b + A a b^{2}\right )} x\right )} \sqrt {b x^{3} + a}\right )}}{27 \, {\left (a b^{5} x^{6} + 2 \, a^{2} b^{4} x^{3} + a^{3} b^{3}\right )}} \]

input
integrate(x^3*(B*x^3+A)/(b*x^3+a)^(5/2),x, algorithm="fricas")
 
output
2/27*(2*((8*B*a*b^2 + A*b^3)*x^6 + 8*B*a^3 + A*a^2*b + 2*(8*B*a^2*b + A*a* 
b^2)*x^3)*sqrt(b)*weierstrassPInverse(0, -4*a/b, x) - ((11*B*a*b^2 - 2*A*b 
^3)*x^4 + (8*B*a^2*b + A*a*b^2)*x)*sqrt(b*x^3 + a))/(a*b^5*x^6 + 2*a^2*b^4 
*x^3 + a^3*b^3)
 
3.3.50.6 Sympy [A] (verification not implemented)

Time = 38.55 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.28 \[ \int \frac {x^3 \left (A+B x^3\right )}{\left (a+b x^3\right )^{5/2}} \, dx=\frac {A x^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {4}{3}, \frac {5}{2} \\ \frac {7}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {5}{2}} \Gamma \left (\frac {7}{3}\right )} + \frac {B x^{7} \Gamma \left (\frac {7}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {7}{3}, \frac {5}{2} \\ \frac {10}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {5}{2}} \Gamma \left (\frac {10}{3}\right )} \]

input
integrate(x**3*(B*x**3+A)/(b*x**3+a)**(5/2),x)
 
output
A*x**4*gamma(4/3)*hyper((4/3, 5/2), (7/3,), b*x**3*exp_polar(I*pi)/a)/(3*a 
**(5/2)*gamma(7/3)) + B*x**7*gamma(7/3)*hyper((7/3, 5/2), (10/3,), b*x**3* 
exp_polar(I*pi)/a)/(3*a**(5/2)*gamma(10/3))
 
3.3.50.7 Maxima [F]

\[ \int \frac {x^3 \left (A+B x^3\right )}{\left (a+b x^3\right )^{5/2}} \, dx=\int { \frac {{\left (B x^{3} + A\right )} x^{3}}{{\left (b x^{3} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(x^3*(B*x^3+A)/(b*x^3+a)^(5/2),x, algorithm="maxima")
 
output
integrate((B*x^3 + A)*x^3/(b*x^3 + a)^(5/2), x)
 
3.3.50.8 Giac [F]

\[ \int \frac {x^3 \left (A+B x^3\right )}{\left (a+b x^3\right )^{5/2}} \, dx=\int { \frac {{\left (B x^{3} + A\right )} x^{3}}{{\left (b x^{3} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(x^3*(B*x^3+A)/(b*x^3+a)^(5/2),x, algorithm="giac")
 
output
integrate((B*x^3 + A)*x^3/(b*x^3 + a)^(5/2), x)
 
3.3.50.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (A+B x^3\right )}{\left (a+b x^3\right )^{5/2}} \, dx=\int \frac {x^3\,\left (B\,x^3+A\right )}{{\left (b\,x^3+a\right )}^{5/2}} \,d x \]

input
int((x^3*(A + B*x^3))/(a + b*x^3)^(5/2),x)
 
output
int((x^3*(A + B*x^3))/(a + b*x^3)^(5/2), x)